Elias Chatzitheodoridis (1)

You are here

 

Replacement of glass in the Nakhla meteorite by berthierine: Implications for understanding the origins of aluminum-rich phyllosilicates on Mars

Elias Chatzitheodoridis

National Technical Univeristy of Athens Greece

Visit took place at the University of Manchester (Ian Lyon) and University of Glasgow (Martin Lee)

A scanning and transmission electron microscope study of aluminosilicate glasses within melt inclusions from the Martian meteorite Nakhla shows that they have been replaced by berthierine, an aluminum-iron serpentine mineral. This alteration reaction was mediated by liquid water that gained access to the glasses along fractures within enclosing augite and olivine grains. Water/rock ratios were low, and the aqueous solutions were circumneutral and reducing. They introduced magnesium and iron that were sourced from the dissolution of olivine, and exported alkalis. Berthierine was identified using X-ray microanalysis and electron diffraction. It is restricted in its occurrence to parts of the melt inclusions that were formerly glass, thus showing that under the ambient physico-chemical conditions, the mobility of aluminum and silicon were low.

This discovery of serpentine adds to the suite of postmagmatic hydrous silicates in Nakhla that include saponite and opal-A. Such a variety of secondary silicates indicates that during aqueous alteration compositionally distinct microenvironments developed on sub-millimeter length scales. The scarcity of berthierine in Nakhla is consistent with results from orbital remote sensing of the Martian crust showing very low abundances of aluminum-rich phyllosilicates.

 
 

CSO Approval date: 14/11/2013
Starting date: 15/05/2014
Ending date: 14/05/2018

Action Chair:
Dr. Muriel GARGAUD (FR)

Vice chair:
Prof. Wolf GEPPERT (SE)

STSM Manager:
Prof. Nigel MASON (UK)

Web Manager:
Prof. Elias CHATZITHEODORIDIS (GR)

Secretary:
Dr. Zuzana KANUCHOVA

 

Grant Holder Financial Representative:

Mrs Annick Caperan

Science Officer:
Dr. Mafalda QUINTAS

Administrative Officer:
Ms Aranzazu SANCHEZ

 

ORIGINS TD1308

A Trans-Domain Action supported by COST.

COST is supported by the EU Framework Programme Horizon 2020

 

 

Involved countries

View the Interactive Map
of Member Countries

Participating Countries
Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Latvia, Lithuania, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, United Kingdom

COST International Partner Countries
Canada (UQAM), South Africa (Univ. of Johanesburgh), Russian Federation (Institute of Geology, Petrozavodsk), Australia (University of Sydney), United States of America (University of Hawai)

Specific Organisations
European Space Agency (ESA)

Short Term Scientific Missions (STSMs)

Aiming at fostering collaboration, sharing new techniques, and infrastructure that may not be available in other participants' institutions or laboratories. STSMs are intended especially for young PhD researchers, but they are open to senior researchers as well. View the documents at this link.

 It should be explicitely noted that Master students are not eligible for STSMs which are for PhD students and more experienced researchers.

The life-Origins COST Project


Life-ORIGINS (TD1308) is a Trans Domain European COST Action dedicated to the scientific investigation of the origins and evolution of life on Earth and habitability of other planets.

The Action has specifically excluded the search for intelligent extraterrestrial life in its portfolio. Creationist theorems are also outside the Action’s remit.

Individuals are not allowed to use the name of the Action, its logo or any corporate identity of COST TD1308 in any communication without prior approval of the Management Committee.

All publications referencing the support of the Action should be sent to the appropriate Working Group chair at the time of submission.