Articles

You are here

10 Sep

Possibility of H2O2 decomposition in thin liquid films on Mars

H2O2 is an important and agressive oxidant on Mars. Today liquid interfacial water on Mars is ephemerally present between the water ice and the mineral surfaces, where slow chemical changes might happen, including 2O2 decompositon. The most effective way for this is catalyzed by Fe ions, which could decompose it under Ph<4.5 with half life of 1–2 days. This process might be important during ...

Read More
01 Aug

Biomorphic structures of clay in Nakhla. Subsurface hydrothermal alteration on Mars

A conspicuous biomorphic ovoid structure has been discovered in the Nakhla martian meteorite, made of nanocrystalline iron-rich saponitic clay and amorphous material. The ovoid is indigenous to Nakhla and occurs within a late-formed amorphous mesostasis region of rhyolitic composition that is interstitial to two clinopyroxene grains with Al-rich rims, ...

Read More
01 Aug
  • Category: 
    Publications

Habitability: from stars to cells

To determine where to search for life in our solar system or in other extrasolar systems, the concept of habitability has been developed, based on the only sample we have of a biological planet—the Earth.

Read More
01 Aug
  • Category: 
    Publications

The Effect of Spaceflight on Growth of Ulocladium chartarum Colonies on the International Space Station

The objectives of this 14 days experiment were to investigate the effect of spaceflight on the growth of Ulocladium chartarum, to study the viability of the aerial and submerged mycelium and to put in evidence changes at the cellular level. U.

Read More

Pages

 
 

CSO Approval date: 14/11/2013
Starting date: 15/05/2014
Ending date: 14/05/2018

Action Chair:
Dr. Muriel GARGAUD (FR)

Vice chair:
Prof. Wolf GEPPERT (SE)

STSM Manager:
Prof. Nigel MASON (UK)

Web Manager:
Prof. Elias CHATZITHEODORIDIS (GR)

Secretary:
Dr. Zuzana KANUCHOVA

 

Grant Holder Financial Representative:

Mrs Annick Caperan

Science Officer:
Dr. Mafalda QUINTAS

Administrative Officer:
Ms Aranzazu SANCHEZ

 

ORIGINS TD1308

A Trans-Domain Action supported by COST.

COST is supported by the EU Framework Programme Horizon 2020

 

 

Involved countries

View the Interactive Map
of Member Countries

Participating Countries
Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Latvia, Lithuania, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, United Kingdom

COST International Partner Countries
Canada (UQAM), South Africa (Univ. of Johanesburgh), Russian Federation (Institute of Geology, Petrozavodsk), Australia (University of Sydney), United States of America (University of Hawai)

Specific Organisations
European Space Agency (ESA)

Short Term Scientific Missions (STSMs)

Aiming at fostering collaboration, sharing new techniques, and infrastructure that may not be available in other participants' institutions or laboratories. STSMs are intended especially for young PhD researchers, but they are open to senior researchers as well. View the documents at this link.

 It should be explicitely noted that Master students are not eligible for STSMs which are for PhD students and more experienced researchers.

The life-Origins COST Project


Life-ORIGINS (TD1308) is a Trans Domain European COST Action dedicated to the scientific investigation of the origins and evolution of life on Earth and habitability of other planets.

The Action has specifically excluded the search for intelligent extraterrestrial life in its portfolio. Creationist theorems are also outside the Action’s remit.

Individuals are not allowed to use the name of the Action, its logo or any corporate identity of COST TD1308 in any communication without prior approval of the Management Committee.

All publications referencing the support of the Action should be sent to the appropriate Working Group chair at the time of submission.